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A Structural Analysis of Detailing, Publicity and Correlated Learning: The Case of Statins

Abstract

When Lipitor, an anti-cholesterol drug (statin) of Pfizer, hit the market in 1997, Pfizer did not

establish any direct evidence on its ability in reducing heart disease risks. Despite its lack of direct

evidence, Lipitor became very successful. We define a variable, “efficiency ratio”, which measures how

efficiently a drug can translate reduction in cholesterol levels into reduction in heart disease risks and

allow the physicians’ initial prior perceptions on the efficiency ratio to be correlated across drugs. We

assume that the physicians learn about the efficiency ratios from landmark clinical trials. Because of the

correlated prior perceptions, new information on one drug can update physicians’ belief on other statins.

The correlated learning may potentially allows late entrants to free-ride on the scientific evidence and

informative marketing activities of the incumbents.

In addition to using product level market share data, we supplement them with switching rates. The

demand estimation literature using product level data usually ignore the possibility that patients may

face switching costs. This could potentially lead to bias in parameter estimates. Unlike the previous

literature, we take the presence of switching costs into consideration when we estimate our demand

model by using switching rate data.

Our estimation results suggest that there is information spill-over of landmark clinical trial results

across drugs. Hence, Lipitor may gain late mover advantage by free-riding on the information provided

by its rivals’ clinical trials. However, it is not the only driving force for its success. The fact that

Lipitor is very effective in lowering cholesterol levels and its intensive detailing efforts also contribute

to its success. Our counterfactual experiments also suggest that take-off of a new drug would be very

fast in the absence of switching costs. For example, Lipitor would have become the best selling drug in

the category right after its entry (Q2 1997) without switching cost.
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1 Introduction

Even a few years after a drug is introduced to the market, uncertainty for the drug can remain and deter

physicians from prescribing it (Lasser et al., 2002). To reduce this uncertainty, it is quite common for

pharmaceutical firms to invest in post-marketing clinical studies. Since pharmaceutical firms are only

allowed to make claims which are supported by scientific evidence,1 these post-marketing clinical trial

results can be very important to the design of firms’ marketing strategies. For example, statin is the

most popular class of anti-cholesterol drugs and most patients take a statin to lower their cholesterol

levels (short-term efficacy), hoping that it will reduce their heart disease risks (long-term efficacy) by

lowering cholesterol levels. However, before a clinical study on reducing heart disease risks becomes

available, a drug company can make a direct claim only on the efficacy in lowering cholesterol levels.

Although a positive correlation between high cholesterol levels and coronary heart disease risks has

been found in medical research, a drug that can lower cholesterol levels effectively does not necessarily

reduce heart disease risks.2 This is because the drug might have some unknown side-effects that raise

the heart disease risks and counter the benefits of lowering cholesterol levels. To make a claim that their

drugs are effective in reducing heart disease risks, statin manufacturers have invested in post-marketing

clinical trials to provide such direct evidence. Very often, however, getting post-marketing clinical trial

results on reducing heart disease risks usually takes several years and requires large financial costs.

When Lipitor (atorvastatin), the best-selling statin synthesized byWarner-Lambert and co-promoted

by Pfizer, hit the market in 1997, Warner-Lambert did not establish any direct evidence on whether

Lipitor can reduce heart disease risks. Instead, the companies focused on communicating with physi-

cians its superior efficacy in lowering cholesterol levels. Interestingly, even though Lipitor did not have a

clinical trial result which provides direct evidence that it can reduce heart disease risks, it had expanded

1FDA Code of Federal Regulations Title 21 (http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm
?CFRPart=203&showFR=1&subpartNode=21:4.0.1.1.4.1, accessed on Aug 31, 2012).

2For instance, a recent clinical trial shows that a new anti-cholesterol combination drug, Vytorin, does not reduce heart
disease risks even though it is very effective in lowering the cholesterol levels (Park, 2008).
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the market volume steadily and rapidly since its entry. Before the entry of Lipitor, three incumbent

statins had already established scientific evidence on their ability in reducing heart disease risks. If

physicians prioritize the long-term benefits of their patients and want to reduce the patients’ heart

disease risks, these prescription patterns are not easy to understand.

In this paper, we propose the following explanation to rationalize this puzzle. Since statins use the

same chemical mechanism to lower cholesterol levels (Zhou et al., 2006), it is plausible that physicians

believe that statins share similar efficacies and side effects. Therefore, when physicians encounter

clinical evidence describing the efficacy in reducing heart disease risks of older statins, they may infer

that Lipitor, the more potent statin (in lowering cholesterol levels), can reduce heart disease risks more

effectively than its competitors even though it does not yet have direct scientific evidence to prove this.

To capture this information spill-over story, we develop a structural demand model of correlated

learning. First, we define a variable, “efficiency ratio,” which measures how efficiently a drug can

translate reduction in cholesterol levels into reduction in heart disease risks. Then, we allow physicians

to learn about the efficiency ratio for each drug from landmark clinical trials. Most physicians and

patients might not actively search for clinical trial results and indirectly learn about scientific informa-

tion through certain types of media. In this research, we allow detailing3 and publicity to play a role

in delivering information embedded in clinical trials to physicians and patients. A pharmaceutical rep-

resentative may inform or remind a physician of the drug’s efficacies. Alternatively, a patient exposed

to publicity on a drug could ask his physician about the drug, and such an inquiry could motivate his

physician to look up clinical evidence for that drug.

In addition to using product level market share data, we supplement them with data on switching

rates (the percentage of patients who switch from one statin to another statin, by drug) and discontin-

uing rates (the percentage of drug j’s patients who decide to discontinue statin treatment). Although

3Detailing refers an marketing activity that a pharmaceutical representative visits a physician and explains efficacies
and side-effects of a drug.
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patients face switching costs when they decide to switch to competing prescription drugs, the switching

costs are usually ignored in the literature using product level market share data (e.g. Azoulay, 2002;

Berndt et al., 1997; Ching, 2010a,b; Ching and Ishihara, 2010, 2012; Narayanan et al., 2005). Ignoring

these switching costs could lead to biased estimation results. Even though we do not explicitly estimate

switching costs due to data limitations, we take their presence into consideration when we estimate our

demand model by using switching rate data.

The estimated results show physicians’ initial prior belief on the efficiency ratio is relatively low and

they learn about the true efficiency ratio from clinical trials. The initial prior correlation on efficiency

ratio across statins is positive and significant (0.66), which suggests that there is correlated learning

across statins. This implies that after reading the results of a clinical trial, physicians learn about

not only the drug studied in the clinical trial, but also other drugs not mentioned in it, although the

information spill-over is not perfect. We also find that detailing plays both persuasive and informative

roles in physicians’ prescription choices. Moreover, we find that publicity in reducing the heart disease

risks dimension increases physicians’ chance to learn about clinical trial results.

Our estimation results suggest that there is information spill-over of landmark clinical trial results

across drugs. Hence, Lipitor may gain late mover advantage by free-riding on the information provided

in its rivals’ clinical trials. How large was the late mover advantage? How much did the incumbent

drugs benefit from first movers’ clinical trials and marketing efforts? To address these questions, we

conduct a counterfactual experiment to measure how important the correlated learning is for Lipitor’s

sales. The counterfactual experiment shows that Lipitor benefits 4% to 7% of its quarterly sales from

the information spill-over from incumbent drugs.

Since our model incorporates consumers’ learning about clinical trials, the results can also be used

to forecast the returns of landmark clinical trials (measured by how much demand they can generate)

which are usually sponsored by pharmaceutical firms. Such results are important for managers who
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need to decide which clinical trials to fund. Note that Lipitor obtained its own landmark clinical trial

results six years after its entry in 1997. How much of the impact did these landmark clinical trials

have on Lipitor’s sales? Were the landmark clinical trials worth the investment for Pfizer given that

Lipitor were able to free-ride the clinical trials conducted by its rivals? Results of our counterfactual

experiment suggest that annual global sales of Lipitor would have decreased by at least $500 million in

2003 and 2004 if Pfizer had not invested in the landmark clinical trials. This suggests that it probably

makes sense for Pfizer to invest in post-marketing clinical trials for Lipitor.

In another counterfactual experiment, we test how fast Lipitor can take off in the absence of switch-

ing costs. The result shows that Lipitor would become the best selling drug in the category right after

its entry (Q2 1997) and all the incumbent drugs would lose market shares very quickly in the absence

of switching costs. However, the experiment also shows that the absence of switching costs would help

the take-off of a newer drug, Crestor, and that could hurt the sales of Lipitor in the longer term.

The rest of this paper is organized as follows. Section 2 reviews previous literature. Section 3

describes background information including the market for statins. Section 4 summarizes how we

collect advertising and publicity data. Section 5 describes the structural model. Section 6 presents the

estimation results. Section 7 is the conclusion.

2 Literature Review

Although some papers have developed learning models to study the pharmaceutical market, most of

them (e.g. Chan et al., 2010; Ching, 2010a,b; Ching and Ishihara, 2012; Chintagunta et al., 2009;

Crawford and Shum, 2005; Narayanan et al., 2005) do not model clinical evidence as a source of quality

signals at all. An exception is the study by Ching and Ishihara (2010). But they only use qualitative

information of comparison clinical studies. In this study, we treat clinical trial results more seriously

than previous research. More specifically, we treat the information reported in landmark clinical trials

as “observable” signals to researchers. This greatly simplifies the estimation procedure by avoiding the
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integration of unobserved signals when forming the likelihood, which is typically the case in previous

literature. In addition, the clinical trial data also help identify the parameters of the model, as we will

discuss later.

Among the existing papers, Chan et al. (2010) is the most related to ours. They propose a learn-

ing model incorporating multi-dimensional attributes. They investigate physicians’ learning on the

effectiveness and side effects of drugs separately through patients’ reported reasons of switching in

the erectile dysfunction (ED) category. Their research is closely related to ours because both models

employ a multi-dimensional model. Yet, the sources of identification are very different. They rely

on physician level survey data, while we rely on the content of clinical trials and the variation of the

number of prescriptions at the product level. Their model also incorporates switching costs since their

data indicates that the market share of a new drug among returning patients is significantly lower than

that among new patients. Their estimation results show that a large switching cost exists in the ED

market.

Our study is also closely related to Janakiraman et al. (2009), who extend the umbrella branding

framework of Erdem (1998) and Erdem and Sun (2002) to investigate correlated learning (information

spill-over) across competing brands in the antidepressant market. However, like most of the previous

studies, they do not consider the possibility that the release of post-marketing clinical trials may

provide more information for the sales representatives to detail. Instead, they follow Erdem and Keane

(1996) and assume that detailing activities always provide physicians with noisy and unbiased signals

on product quality. This assumption implies that drug manufacturers are always fully informed of

their drugs’ true quality and they can make physicians learn about the true quality of their products

after paying the physicians many detailing visits. This implication is inconsistent with the findings of

other empirical analysis (e.g. Azoulay, 2002; Venkataraman and Stremersch, 2007; Ching and Ishihara,

2012), which show evidence that clinical trial results can affect the effectiveness of detailing. Unlike
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Janakiraman et al. (2009), our model is able to study the interactions between post-marketing clinical

trials and informative marketing activities across drugs.

Our modeling framework significantly extends the study of Ching and Ishihara (2010), which pro-

vides a structural modeling framework that allows the effectiveness of informative detailing to vary with

clinical trial evidence. Unlike our study, Ching and Ishihara (2010) do not consider correlated learning.

Moreover, we use quantitative information of clinical studies, instead of just the qualitative clinical

evidence outcomes of comparison studies (which say whether drug A is better than B). It should also

be highlighted that most of the studies mentioned above do not take switching costs into consideration,

except Chan et al. (2010), who use physician level data.

3 Background

There are two main types of cholesterol: LDL (“bad” cholesterol) and HDL (“good” cholesterol).4 The

medical literature has shown that high cholesterol is a risk factor for heart diseases. Although the main

purpose of statins is to reduce heart disease risks, a drug company cannot make the direct claim that

its statin can reduce heart diseases risks until it obtains direct evidence from a clinical trial to support

the claim. This is because the public health agency is worried that some unknown side-effects of the

drug could counter its benefits of lowering cholesterol levels. The information on the effectiveness of

a statin in reducing heart disease risks, however, is usually unavailable when the statin is marketed

because it takes a few years to obtain direct evidence of it. To obtain the direct scientific evidence,

pharmaceutical firms invest in very expensive post-marketing clinical trials, which are called landmark

clinical trials. More specifically, the clinical endpoint (the target outcomes) of landmark clinical trials

for statins is the drugs’ efficacy in reducing heart disease risks.5 Landmark clinical trials also report

how much each statin lowers cholesterol levels in patients’ blood. By looking at these two efficacies,

4Usually, when people simply use the word cholesterol, they refer it to LDL. We will follow this tradition in this study.
5We should note that the definition of landmark trial is not universally agreed for statins although most medical sources

will give a similar set of landmark clinical trials. Our definition is relatively broad. Some sources will further classify our
list of landmark trials to:(i) very influential trials; (ii) enrichment trials.
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the effectiveness in lowering cholesterol levels and in reducing heart disease risks, physicians can learn

about the efficiency ratio of a statin. In this research, we assume that landmark clinical trials are the

only source of information for the effectiveness in reducing heart disease risks of statins. One might

argue that physicians could learn from their patients’ feedbacks. However, a heart attack is a very rare

event and it is very hard for a physician to learn from his/her own patients’ feedbacks. Therefore, we

model the efficiency ratios reported in clinical trials as the only quality signals in physicians’ learning

process.

On the other hand, it is much easier and quicker for physicians to learn about a drug’s effectiveness

in lowering cholesterol levels. The manufacturer of each statin is required to prove the statin’s ability in

lowering cholesterol levels through clinical trials before the drug’s entry to the market. In addition to

clinical trials, physicians also learn about the effectiveness in reducing cholesterol levels from his/her own

patients’ feedbacks. Once physicians prescribe statins to their patients, they can observe their patients’

cholesterol levels in a relatively short period. Therefore, in this research, as the first approximation, we

assume that physicians always know the effectiveness of reducing cholesterol levels for all statins.

Table 1 contains a brief synthesis of the main descriptive statistics for the five major statins, Meva-

cor, Pravachol, Zocor, Liptior and Crestor. Although there are seven statins available in our dataset,

our analysis focuses on these five major statins because their combined market shares exceed more than

95% of the total statin market across the whole sample period. We treat the other two statins as part

of the outside good.

In general, statins do not relieve any acute symptoms from patients and the real benefits of stains

are not easily observable to patients. Because patients do not feel any direct discomfort from the

discontinuation of statin treatment, a significant proportion of patients discontinues statin treatment

in each period (Neslin et al., 2009). Unlike the high discontinuation rate, switching rates between

statins are very low, which suggests that large switching costs exist in this market. Chan et al. (2010)
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incorporate switching costs when they model prescription drug choice and find that large switching

costs exist in the erectile dysfunction (ED) drug market. While Chan et al. (2010) use physician level

data, we only observe product level data. Hence, we do not estimate the switching costs. But we take

their presence into consideration by supplementing product level data with switching rate data. More

details about the switching rate data will be provided in subsection 4.2.

4 Data

The analysis in this research integrates four different data sources: (i) product level quarterly prescrip-

tion volume and detailing data for the Canadian statin market from IMS Canada; (ii) product level

quarterly prescription switching rates between statins and discontinuing rates from statins from On-

tario Health Insurance Program (OHIP); (iii) landmark clinical trials obtained from published medical

journals and a meta-analysis which summarizes statins’ efficacy in lowering cholesterol levels; (iv) news

articles covering statins collected from Factiva.

4.1 Prescription Volume and Detailing – Evidence for Correlated Learning

The product-level data obtained from the market-research firm, IMS Canada, consist of quarterly

observations of prescription volumes and detailing costs for each statin across Canada from Q2 1993

(t = 1) to Q4 2004 (t = 47). The market is defined as the national market for quarter t. The observation

is defined as a molecule-quarter combination.

We now present some preliminary evidence to support our correlated learning hypothesis. In figure

1, we plot the quarterly prescription volumes for the five statins in Canada. The prescription volume

for Lipitor reached almost three million by 2001 while the earlier arrivals, Zocor and Pravachol, had

900,000 and 500,000 quarterly prescriptions, respectively. In 2002, Lipitor achieved estimated annual

global sales of $7.4 billion and became the best-selling product in the prescription drug market. When

Lipitor hit the market in 1997, Warner-Lambert, the manufacturer of Lipitor, released a head-to-head
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study supporting superior efficacy of Lipitor in lowering cholesterol levels over existing statins but

did not establish any direct scientific evidence that Lipitor is effective in reducing heart disease risks.

ASCOT-LLA, the first landmark clinical trial to support Lipitor’s efficacy in reducing heart disease

risks, was released in 2003, six years after Lipitor’s entry. On the other hand, the existing statins had

well established direct evidence that they are effective in reducing heart disease risks. Figure 1 indicates

that Lipitor became very successful before the direct evidence supporting its efficacy in reducing heart

disease risks became available. If we believe that physicians want to reduce their patients’ chance of

getting heart disease, their behavior of prescribing a new drug without direct clinical evidence over

drugs with direct evidence, is not easy to apprehend.

One possible explanation for Lipitor’s success without direct evidence is correlated learning, which

will be modeled in section 5. The other possible explanation is that Lipitor is the most effective statin in

lowering cholesterol levels and physicians might still infer that Lipitor is the most effective in reducing

heart disease risks in the absence of information spill-over even if physicians may believe that Lipitor’s

efficiency ratio is low. Our structural model and the clinical data will yield the results to allow us to take

both of these factors into account. Our estimates will be useful to measure their relative importance.

Previous research has documented that marketing activities have an influence on physicians’ learn-

ing. Since detailing is considered a major activity of the pharmaceutical industry, we incorporate

information on detailing expenditures for each drug. To convert from nominal to real dollars for de-

tailing, we use the Consumer Price Index from Statistics Canada. Figure 2 graphs the evolution of the

quarterly detailing spending for five statins. The market entries of Lipitor (Q2 1997) and Crestor (Q1

2003) coincide with their large detailing efforts. Mevacor (Q2 1997), Pravachol (Q3 2000), and Zocor

(Q1 2003) stopped detailing when the generic substitutes for their own products were introduced in

the market. While on average Pravachol spent more detailing than Lipitor between Q1 1997 and Q4

1998, Lipitor became the best selling statin in Q1 1999. This figure shows that although detailing may
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partially account for the sales, the success of Lipitor cannot be fully explained by detailing spending

only. By estimating our structural model, we can quantify the relative importance of each factor in

contributing to the success of Lipitor.

4.2 Switching and Discontinuing Rate Data

The product-level data obtained from OHIP (Ontario Health Insurance Program) consist of quarterly

number of patients who continue using the same statin (ajt), number of patients who switch to other

statins (bjt), and number of patients who discontinue statin medication (cjt) at time t among the patients

who use statin j = 1, · · · , 5 at time t− 1 in the province of Ontario from Q2 1993 (t = 1) to Q4 2004

(t = 47). From this dataset, we obtain the switching rate Sjt =
bjt

ajt+bjt+cjt
and the discontinuing rate

Djt =
cjt

ajt+bjt+cjt
. We will use the switching rates and the discontinuing rates for the analysis. Figures

3 and 4 present the switching and discontinuing rates, respectively. Figure 3 shows that the switching

rates between statins are less than 5% for almost all quarters for all drugs. These low switching rates

indicate the existence of switching costs in the statin market. In other words, if a patient is currently

taking a certain statin treatment, the patient is unlikely to switch to a different statin in the next

period. Figure 3 also shows that switching rates became higher when new drugs, Lipitor in 1997 and

Crestor in 2003, were introduced. These high switching rates coinciding with new drugs’ entry seem to

implicate that there is heterogeneity in switching costs across patients, i.e., patients with low switching

costs switch to new statins first. This implication is beyond the scope of this research and we leave it

for future research. Figure 4 presents that discontinuing rates are almost 15% on average, which are

much higher than switching rates.

Note that prescription volume and detailing data described in the previous subsection are nation-

wide (Canada) and switching and discontinuing data described in this subsection are province-wide

(Ontario). However, we assume that nation-wide switching and discontinuing rates would be the same

as province-wide switching and discontinuing rates from the province of Ontario for the following
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reasons:

1. This assumption could be reasonable if switching and discontinuing rates are not very sensitive

to physicians’ beliefs about statins’ efficacy in reducing heart disease risks. This could happen

if switching rates and discontinuing rates are more closely related to each patient’s idiosyncratic

match with statins than physicians’ learning process.

2. The population in Ontario is more than one third of the population in Canada. Therefore, the

sample size should be large enough to represent the population distribution of Canada.

Therefore we will use switching rates and discontinuing rates as if they are nation-wide data.

4.3 Clinical Trials

Azoulay (2002), Ching and Ishihara (2010), and Cockburn and Anis (2001) find evidence that clinical

trials have significant impacts on physicians’ prescribing decisions. We believe that clinical trial out-

comes affect physicians’ decisions by providing them with information on efficiency ratios of statins,

i.e., how efficiently a statin can translate reduction in cholesterol levels into reduction in heart disease

risks. This is because patients with high cholesterol levels take statins to mainly reduce their heart

disease risks.

Each landmark clinical trial has slightly different clinical endpoints and follows patients with dif-

ferent conditions for different follow-up periods. For example, some clinical trials measure relatively

healthy patients’ chances of the first heart attack for a relatively long period and others investigate a

statin’s second heart attack prevention effects on patients with high risks for a relatively short term.

To collect the landmark clinical trial data and create a consistent and reliable measure across different

types of landmark clinical trials, we follow a similar method adopted by a meta-analysis (Delahoy et al.,

2009). We use placebo- or usual care- controlled randomized trials that report statins’ clinical endpoint

(efficacy in reducing heart disease risks) and follow more than 1,000 patients for more than 1 year. Even
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though clinical endpoints are slightly different across landmark clinical trials, all the landmark clinical

trials report mean LDL reduction and relative risk reduction in a major coronary event. A major

coronary event is defined as a nonfatal myocardial infarction or coronary heart disease-related death.

Since medical literature has claimed that there is an overall positive and linear relationship between

reduction in LDL and reduction in the risk for major coronary events across landmark clinical trials, we

adopt the efficiency ratio as a measure on how efficiently a drug can translate absolute LDL reduction

into the reduction in the risks for major coronary events (see figure 1 in Delahoy et al. (2009)). Table

2 lists the 12 landmark clinical trials we include in this research.

Every statin is approved as a cholesterol lowering drug because the manufacturer is required to prove

its statin’s ability in lowering cholesterol levels through clinical trials to market the drug. This type of

information is considered relatively easy for physicians to obtain since there are abundant numbers of

clinical trial results before the drug’s entry. Moreover, physicians can directly observe the cholesterol

levels of their patients within a short period of time after prescribing a statin. In this research, therefore,

we assume that physicians immediately learn about the true efficacy in lowering cholesterol levels of

each stain when the statin is marketed.

For our analysis, we take the information on each drug’s cholesterol lowering ability from the study

of Law et al. (2003) who conducted a meta-analysis summarizing the results of clinical trials which

investigate effectiveness of statins on reducing LDL. Law et al. (2003) include all double blind clinical

trials reporting mean absolute LDL reductions (mmol/L) in the statin treated group and in the placebo

group from Medline, Cochrane Collaboration, and Web of Science databases. They define drug efficacy

as the difference between the LDL reductions in the treated and placebo groups, and calculate the

drug efficacy for each clinical trial. From the drug efficacy data across clinical trials, they report the

mean absolute reduction in LDL of statins including Mevacor, Pravachol, Zocor, Lipitor, and Crestor

by dosage (5mg, 10mg, 20mg, 40mg and 80mg) across clinical trials. Since this meta-analysis does not
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report the effectiveness in LDL reduction of Mevacor with 5mg dose, we exclude data for all other statins

with 5mg dose. Table 3 shows the mean LDL reduction of each statin by strength.6 The numbers are

taken from table 2 of Law et al. (2003). By taking the average of the reported mean LDL reductions

across strengthes of each drug, we create a drug specific variable denoting LDL reduction efficacy. The

values of this variable is 1.59 for Mevacor, 1.28 for Pravachol, 1.66 for Zocor, 2.22 for Lipitor, and 2.44

for Crestor.7 The data from the study of Law et al. (2003) is very important for our research because

it allows us to pin down the effectiveness of lowering cholesterol levels for each statin without the need

of estimating them. If we had to estimate the effectiveness of lowering cholesterol levels, it would be

very hard for us to identify the learning parameters. The identification strategy will be discussed in

subsection 5.8.

4.4 Publicity

To investigate the impact of media coverage on physicians’ learning, we use the similar publicity dataset

from chapter 1.

Recall that collect news article data covering statins that contain the word “statin” or words related

to statin, such as the chemical names or brand names from Factiva from 1986 to 2004. Then, we

restrict the sample to news articles from sources to which Canadian patients may have access. For each

article, we extract its headline, source, content and publication date. We first map the information of

each article into two multidimensional variables: (a) general publicity variable (publicityst ) – if it has

sentences that discuss statins in general without referring to any particular statin by brand or chemical

name; (b) drug specific publicity variable (publicityjt) – if it has sentences that refer to one or more

statins by either brand or chemical name. Note that an article may contain information that can be

mapped onto both variables – it can provide information about statins in general at the beginning, and

6While table 3 uses mmol/L as unit of LDL reduction, the unit in table 2 is mg/dL. Because molar mass of cholesterol
is 386.65g, 1 mmol/L of LDL can be converted to 38.6mg/dL.

7We have also collected data from CURVES study, with which Pfizer provided the FDA to get an approval for Lipitor.
The results on the LDL reduction abilities are consistent with those of Law et al. (2003). However, CURVES study does
not report the efficacy of Crestor. Therefore, we do not use the results from CURVES study.
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then later mention which particular statin is the most effective. Our intuition is that general publicity

is more likely to affect the overall demand for statins, while drug specific publicity could influence

both total demand for statins and which particular statin to use. For drug specific publicity, we

sometimes encounter articles that compare drugs. Therefore, we further classify drug specific publicity

into comparison (c) or non-comparison (nc). The results of chapter 1 indicate that comparison publicity

does not have much variation. Therefore, we only use non-comparison drug specific publicity.

We classify both general and drug specific publicity into three dimensions: lowering cholesterol

levels, reducing heart disease risks and side-effects. Hereafter, we use (lcst , rh
s
t , se

s
t ) to represent the

three dimensions of the general publicity variable, where the superscript s means that they are for the

whole statin class; t indexes time. For the drug specific publicity variable, we use (lcjt, rhjt, sejt), to

represent its three dimensions, where j is an index for drug. For each dimension of both drug specific

and general publicity, we use a two-step Likert scale (+1, -1) to assess its tone. We assign “+1” (“-1”)

if the article contains sentences which favor (do not favor) the focal drug.

In our empirical analysis, the length of a period is a quarter. Since there are usually more than

one news story published/broadcasted in each quarter, we need to aggregate the outcomes of the news

appeared in the same quarter to obtain a quarterly observation. We use the following procedure to do

the aggregation. Let (publicityst,l, publicityjt,l) denote the publicity variables associated with article l

that is published in quarter t. Also, let Lt be the total number of news stories appeared in quarter t.

Then the values of (publicityst , publicityjt) are obtained by simply summing (publicityst,l, publicityjt,l)

across the news stories appeared in quarter t. For example, publicityst =
∑Lt

l=1
publicityst,l.

Figure 5 shows the general publicity flow variables. While there are some bad news articles about

statins’ side-effects, especially in 2001 when Baycol was removed from market, most news articles report

that statins are effective in lowering cholesterol levels and reducing heart disease risks. Table 4 presents

a descriptive summary of drug specific publicity variables. In general, lc-type articles are more common
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than rh-type articles, while se-type articles are the least common.

5 Model and Estimation

In this section, we propose a structural demand model incorporating physicians’ correlated learning

about clinical trial outcomes. We also discuss how to construct the likelihood function, and the identi-

fication issues.

5.1 Bayesian Learning Model

To investigate correlated learning across drugs, this study employs a dataset which comprises of five

different drugs. Without the loss of generality, we assume there are only two drugs here. We provide

the generalized version of our learning model with J drugs in appendix B. Consider a situation where

physician k prescribes anti-cholesterol drug j = 1 or 2 to patient i.

The utility of patient i who consumes drug j at time t is given by

Uijt = ω · qhj + bj + ǫijt, (1)

where qhj denotes drug j’s efficacy in reducing heart disease risks and bj captures time-invariant brand

specific preference, e.g., price difference across brands.8 ǫijt is an i.i.d. random shock and is extreme

value distributed.

We assume that the physician chooses a drug to maximize the sum of her patient’s utility condi-

tional on her information set and her utility from marketing spending of pharmaceutical firms such as

persuasive detailing.9 The demand system is obtained by aggregating this discrete choice model of an

individual physician’s behavior. Note that physicians/patients are uncertain about qhj . We therefore

assume that physicians make their prescribing decisions based on her expected utility. Let Ik(t) denote

physician k’s information set at time t. Physician k’s expected utility of prescribing drug j to patient

8Due to the strict regulations on prescription drug prices in Canada, prices for statins hardly changed over our sample
period.

9We will discuss how to model persuasive detailing in subsection 5.3.
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i at time t will be:

E[Uk
ijt|I

k(t)] = ω · E[qhj |I
k(t)] + bj + ǫijt, (2)

where E[·|Ik(t)] denotes the expected value given physician k’s information set at time t. We assume

that physicians make their prescribing decisions based on their current expected utility. One might argue

that physicians can be forward-looking and experiment different drugs to learn about qhj . However, since

a heart attack is a very rare event, it is unlikely that physicians can use patients’ experiences to update

their prior about qhj . Consequently, we do not consider that physicians have an incentive to experiment

different drugs on their patients.

Let qcj be the efficacy in lowering cholesterol levels of drug j, and βj be the efficiency ratio. We define

the “efficiency ratio” as a measure on how efficiently a drug can translate a reduction in cholesterol

levels into a reduction in heart disease risks. Then, qhj can be expressed as follows:

qhj = qcj · βj . (3)

Because we assume that physicians have complete information about the efficacy in lowering cholesterol

levels of each drug (qcj) but are uncertain about the efficiency ratio of each drug (βj),
10 physician k’s

expectation about qhj can be expressed as follows.

E[qhj |I
k(t)] = qcj · E[βj |I

k(t)]. (4)

Now we turn to explain how physicians learn about the efficiency ratios. We model physicians’

learning process by adopting the Bayesian learning framework (DeGroot, 1970). Physicians construct

their initial prior belief before they learn about the results of landmark clinical trials. As discussed

earlier, because all statins use a similar mechanism to lower cholesterol levels, the efficiency ratios across

statins in their initial prior belief may be correlated. In other words, one statin’s revealed information

10Physicians can easily learn about the efficacy in lowering cholesterol levels of each drug from abundant non-landmark
clinical trials or from patients’ consumption experience. On the other hand, physicians can learn about the efficiency ratio
only from landmark clinical trials.
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on the efficiency ratio can be a good indicator to the levels of other statins’ efficiency ratios. Due to

these intrinsic quality correlations, physicians may infer the quality of statin j in reducing heart disease

risks indirectly from the clinical trial evidence of other drugs in the statin class. Our model captures

this information spill-over effect by allowing physicians’ initial priors on efficiency ratio to be correlated

across drugs. Therefore, we allow the off-diagonal elements in the variance-covariance matrix for the

initial prior beliefs to be non-zero. The initial prior on the efficiency ratio can be expressed as follows:

(

β1
β2

)

t=0

∼ N

((

β

β

)

, σ2
β

(

1 ρ0
ρ0 1

))

. (5)

Note that we use five drugs in our empirical analysis. In principle, we can let the correlation parameter

values differ across pairs of drugs. However, estimating the heterogeneous correlation parameter would

probably require much richer dataset than what we currently have. Therefore, we restrict ρ0 to be the

same across all pairs of drugs when implementing our model.

Since it is unlikely for physicians to learn about the efficacy in heart disease risks of statins from

their patients’ experiences, landmark clinical trials, which are specifically designed to prove the efficacy

of drugs in heart disease risks, become the main sources of information about this efficacy. Physicians

are assumed to update their beliefs on the efficiency ratio of each drug when they are exposed to

landmark clinical trial results. A landmark clinical trial provides a noisy but unbiased signal for the

efficiency ratio. A signal from clinical trial l for drug j, β̃jl, can be expressed as:

β̃jl = βj + ζl, (6)

where βj is the true mean level of the efficiency ratio for drug j and ζl is a signal noise and i.i.d.

normally distributed with zero mean and variance σ2
ζl for landmark clinical trial l. Let σ2

ζ be signal

variance for one patient, and Nl be the number of patients who participate in landmark clinical trial

l. As long as the individual signals are i.i.d. across patients, it can be shown that σ2
ζl = σ2

ζ/Nl. This

implies that the more participants a clinical trial has, the more physicians will trust its results. Note
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that, unlike previous literature, we are able to treat quality signals as observables to researchers by

using the information from the landmark clinical trials.

To explain how physicians update their beliefs through learning about clinical trials, let us provide

a simplified example which can be easily generalized. The general model is provided in the appendix.

In this example, we assume that there is only one landmark clinical trial, which investigates drug 1’s

efficacy in reducing heart disease risks. Let βjt be the expected perceived efficiency ratio, and σ2
βjt

be the perceived variance of drug j, conditional on the physician k’s information set at time t. The

variance-covariance matrix for prior beliefs of physician k at time t becomes,

V [βj |I
k(t)] =

(

σ2
β1t πt
πt σ2

β2t

)

. (7)

If the physician learns about clinical trial l for drug 1, she will update her beliefs on the efficiency

ratio of drug 1 as follows:

β1t+1 = β1t +
σ2
β1t

σ2
β1t + σ2

ζ1l

· (β̃1l − β1t). (8)

She also updates her prior variance on the efficiency ratio of drug 1 at time t as follows:

σ2
β1t+1 =

σ2
β1tσ

2
ζ1l

σ2
β1t + σ2

ζ1l

. (9)

With correlated prior beliefs on the efficiency ratio, signals for drug 1 are used to update beliefs on

drug 2 as well. Posterior beliefs for drug 2 are given as

β2t+1 = β2t +
πt

σ2
β2t + σ2

ζ1l

(β̃1l − β1t), (10)

where πt denotes the off-diagonal element in the variance-covariance matrix of the perceived quality on

the efficiency ratio at time t.

The variance of her posteriors on the efficiency ratio of drug 2 at time t becomes

σ2
β2t+1 = σ2

β2t −
π2
t

σ2
β2t + σ2

ζ1l

. (11)
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The off-diagonal element of variance-covariance matrix for posterior beliefs becomes

πt+1 =
πtσ

2
ζ1l

σ2
β1t + σ2

ζ1l

. (12)

As a result, the variance-covariance matrix for posterior beliefs becomes

V [βj |I
k(t+ 1)] =







σ2

β1t
σ2

ζ1l

σ2

β1t
+σ2

ζ1l

πtσ
2

ζ1l

σ2

β1t
+σ2

ζ1l

πtσ
2

ζ1l

σ2

β1t
+σ2

ζ1l

σ2
β2t −

π2
t

σ2

β2t
+σ2

ζ1l






. (13)

5.2 Roles of Detailing

In this subsection, we explain how detailing influences demand. The economics and marketing litera-

ture studying the pharmaceutical industry find evidence that detailing can play both informative and

persuasive roles (Chan et al., 2010; Ching and Ishihara, 2012; Leffler, 1981; Narayanan et al., 2005). To

encourage physicians to prescribe their drugs, detailers might inform physicians of their drug’s efficacies

and side effects (informative role). However, they can also persuade physicians to prescribe their drugs

regardless of the clinical information about their drugs (persuasive role). For example, detailers provide

physicians with free gifts, which can affect physician’s prescribing decisions. We will model both roles

and discuss how to separately identify them.

5.3 How Does Persuasive Detailing Work?

We first describe how we model the persuasive role. Here, we adopt the standard approach by modeling

a detailing goodwill stock entering physicians’ utility function directly. Therefore, we modify eq(2) as

follows:

E[Uk
ijt|I

k(t)] = ω · E[qhj |I
k(t)] + κd · STK detailjt + bj + ǫijt, (14)

where STK detailjt is a persuasive detailing goodwill stock for drug j at time t. The persuasive

detailing stock is defined as:

STK detailjt = δp · STK detailjt−1 + detailjt, (15)
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where δp is the monthly carryover rate for detailing; detailjt denotes the flow of detailing spending for

drug j at time t.

5.4 How Does Informative Detailing Work?

We now explain how to model the informative role of detailing. Then we describe physicians’ learning

through detailing and forgetting behaviors. Generally speaking, most physicians are busy with their

own practices. We assume that physicians may not learn about the efficiency ratio directly from clinical

trial results. Following Ching and Ishihara (2010), we assume that some of the physicians learn about

the efficiency ratios through visits of pharmaceutical representatives (detailers). Since detailers are not

able to reach all the physicians at the same time, only some of physicians will be detailed and learn

about the most updated clinical trial results in each period. We assume the probability that each

physician learns about the latest landmark clinical trial result for drug j at time t is a function of

detailing at time t and the probability is expressed as follows:

Pinfo(detailjt) =
exp(α0 + αd · detailjt)

1 + exp(α0 + αd · detailjt)
, (16)

where detailjt denotes detailing spending for drug j at time t. It should be highlighted that this

probability does not depend on a physicians’ current information set (i.e., independence assumption).

Similar to Ching and Ishihara (2010), we also model the physicians’ forgetting behavior about the

clinical trial results. We assume that the probability that a physician remembers the information in the

next period is δi given that the physician is informed of clinical trial information for drug j. δi can be

interpreted as the carryover rate of informative detailing (or information). For instance, if there are one

half of physicians who are informed of a new clinical trial and the other half are totally uninformed at

time t, only 1

2
δi of physicians will retain the clinical trial information and 1− 1

2
δi will be the proportion

of uninformed physicians at the beginning of time t+ 1 before they are exposed to detailjt+1.

Since we allow physicians to be heterogenous with respect to their information sets, the number

of physician types (characterized by their information sets) increases exponentially as the number of
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published clinical trials increases. If there are total n clinical trials up to time t, theoretically there

will be 2n types of physicians at time t. To make the estimation of our model feasible, we make the

following additional assumptions:

1. If a physician learns about a clinical trial for drug j at time t, she will learn about all the published

clinical trials for drug j prior to time t.

2. If a physician forgets information about drug j, her information set on drug j becomes the same

as the initial priors. Suppose that there are two clinical trials for drug j. If a physician is informed

of both clinical trials 1 and 2 at time t and she happens to forget the information on drug j at

the end of time t, she will forget both the clinical trials and will become totally uninformed of

clinical trials for drug j at the beginning of time t+ 1.

The above assumptions significantly reduce the computational burden of estimating the model. More

specifically, if there are nj clinical trials up to time t for drug j ∈ {1, · · · , J} , then the number of

physician types reduces from 2n1+n2+···+nJ to (n1 + 1) · (n2 + 1) · · · (nJ + 1).

The following example should help understand how the learning and forgetting processes work.

Suppose that there is only one drug, and that there are two clinical trials available for this drug. One

of them is published at the beginning of period 1 and the other one at the beginning of period 3. Let P l
t

denote proportion of physicians who are informed of clinical trial l. P 0
t denotes proportion of physicians

who are totally uninformed at time t. Also, let detailt denotes detailing spending for the drug at time

t.

1. At time t = 0, every physician has the same initial prior belief and is totally uninformed, i.e.,

P 0
t=0 = 1.

2. At time t = 1, clinical trial 1 is available and the firm spends detailt=1. As a result, P 1
t=1 =

Pinfo(detail1), and P 0
t=1 = 1− Pinfo(detail1).
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3. At the beginning of period 2, the proportion of physicians remained being informed of clinical trial

1 becomes δiP
1
t=1. Moreover, at the beginning of period 2, the proportion of physicians who are

uninformed about clinical trial one becomes P 0
t=1 + (1− δi)P

1
t=1 = 1− δiP

1
t=1. At time t = 2, the

firm spends detailt=2 (and recall that only clinical trial one is available). Therefore, at the end of

period t = 2, P 1
t=2 = δiP

1
t=1+(1−δiP

1
t=1)Pinfo(detail2), and P 0

t=2 = (1−δiP
1
t=1)(1−Pinfo(detail2)).

4. At time t = 3, now clinical trial 2 is available and the firm spends detailt=3. Following the similar

calculation in step 3, P 0
t=3 = (1−δiP

1
t=2)(1−Pinfo(detail3)), and P 1

t=3 = δiP
1
t=2(1−Pinfo(detail3)).

Moreover, by the independence assumption, The proportion of physicians who are informed of

both clinical trials at time t = 3, P 2
t=3 = Pinfo(detail3).

It should be highlighted that the way we model heterogeneity in information sets is more flexible

than Ching and Ishihara (2010), who simply assume that a physician either knows the most updated

information or uninformed about drug j at time t. In other words, they assume that at time t, a

physician either knows all the clinical trials for drug j published up to time t, or they do not know any

clinical trials about drug j at all.

5.5 How Does Informative Publicity Work?

In this subsection, we explain how we can extend the informative role of detailing to publicity. Since

statins are a very popular class of anti-cholesterol drugs, they have received extensive media coverage.

We are interested in whether this media coverage has any impact on physicians’ learning. While

physicians might not rely on TV news or newspaper articles as a source of information about drugs’

efficacies or side-effects, it is plausible that their patients who were exposed to media coverage about

a statin would ask or motivate physicians to read the most updated clinical trial results. Therefore,

publicity might work as informative detailing works. Chapter 1 empirically investigates the impact of

publicity and the results suggest that non-comparison brand specific publicity has impact on brand

choice. Therefore, we include non-comparison publicity in the dimensions of lowering cholesterol levels,
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reducing heart disease risks and side effects. To capture the above mentioned physicians’ behaviors we

can extend equation (16) and model the “informative” publicity as follows:

Pinfo(detailjt, PUBjt) =
exp(α0 + αd · detailjt + αp · PUBjt)

1 + exp(α0 + αd · detailjt + αp · PUBjt)
, (17)

where PUBjt denotes a vector of three dimensional (lc, rh and se) brand specific publicity variables

for drug j at time t.

5.6 Prescribing Decisions

Based on patients’ choices at the previous period (t− 1), we classify patients at time t into two groups,

“potential patients” and “existing patients.” First, we will explain the decision making process of

“potential patients.” As figure 6 depicts, our model assumes that their decision making process consists

of two stages. The first stage (adoption decision stage) determines whether a potential patient will use

statins. The decision in this stage could be jointly made by the patient and his physician. For example,

news articles reporting the problem of high cholesterol levels or the benefits of taking statins could entice

the patient to see a physician. Alternatively, a physician detailed by pharmaceutical representatives

might recommend her patient to get a blood test. Therefore, we model that sum of publicity and sum

of detailing spending affect the decision making process in this stage. The probability that a physician

prescribes one of the statins to her potential patients at time t, Pt(statin), is expressed as the follows:

Pt(statin) =
exp((αs

d + αs
c · Clinicalst ) · STK detailst + αs

p · STK PUBs
t + αs

0)

1 + exp((αs
d + αs

c · Clinicalst ) · STK detailst + αs
p · STK PUBs

t + αs
0
)
, (18)

where STK detailst denotes a stock of detailing for the whole statin class and Clinicalst denotes the

accumulated number of participants in landmark clinical trials for statins up to time t. We introduce

the variable Clinicalst to investigate whether clinical trial results increase the impact of detailing on

category demand. Lastly, STK PUBs
t denotes a vector of three types of general publicity (rhst , lc

s
t ,

sest ) stocks for the class of statin.

If a potential patient decides to use statins, then we move to the second stage (statin choice stage),
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which determines which statin to be prescribed. The physician evaluates all the statins available given

her information set and chooses the most appropriate statin for her patient. The probability that

physician k, who is type g at time t, prescribes j to new patient i conditional on prescribing one of the

statins, P k
it(j|statin, ktype), is expressed as follows:

P k
it(j|statin, ktype) =

exp(E[Uk
ijt|I

k(t)])
∑J

r=1
exp(E[Uk

irt|I
k(t)])

. (19)

Note that the information set of physician k, Ik(t) is a function of physicians’ type g at time t. Section

5.4 describes how we separate physicians into (n1 + 1) · (n2 + 1) · · · (nJ + 1) types according to their

information set. Let Nd denotes the number of physicians’ types and Pt(ktype = g) denotes the proba-

bility of physician k being a type g physician. The expected “new patients demand” (group 1) for drug

j at time t, d̂1jt, can be expressed as :

d̂1jt = (mt −

J
∑

r=1

drt−1) · Pt(statin) ·

Nd
∑

g=1

Pt(ktype = g) ·
exp(E[Uk

ijt|I
k(t)])

∑J
r=1

exp(E[Uk
irt|I

k(t)])
. (20)

Note that (mt −
∑J

r=1
drt−1) can be considered a potential patient pool for statins at time t.

For “existing patients,” their decisions are more complicated than “potential patients”. Figure 7

depicts the decision tree of existing patients. In the first stage, they decide either to quit taking statins

or to keep taking statins. Once they decide to keep taking statin, they will decide either to stay with

the same statin or switch to other statins. Once they decide to switch to other statins, they will decide

which statin to switch. If a patient is already on a statin treatment, the patient might keep taking the

same statin even though there are alternatives to give him a better expected consumption utility. One

of the reasons for this could be that because many patients with high cholesterol problems might already

take several drugs, it will be very troublesome for patients to learn how to take the new medication and

to understand its potential side-effects. If the existing patient decides to stay with the current statin,

we classify the patient as a “retainer.” If he decides to switch to one of other statins, we classify him

as a “switcher.”
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The expected demand for retainers (group 2) can be expressed as :

d̂2jt = djt−1 · (1− Sjt −Djt), (21)

where Sjt and Djt denote switching and discontinuing rates of drug j at time t which is from our data

set. It should be highlighted that the whole sequence of {d̂2jt} will be determined by the equation above

because we observe Sjt, Djt and djt.

The “switchers” (group 3) are patients who took a statin other than drug j in the previous period

but take statin j at period t. Switchers do not consider the same drug which they chose in the previous

period. The estimated demand for switchers can be expressed as :

d̂3jt =

J
∑

m=1, 6=j

dmt−1 · Smt ·

Nd
∑

g=1

Pt(ktype = g) ·
exp(E[Uk

ijt|I
k(t)])

∑J
r=1, 6=m exp(E[Uk

irt|I
k(t)])

. (22)

Note that once a patient leaves from taking statin treatment, he will be back to the potential patient

pool in the next period.

We should also highlight that we do not use nested logit framework for the switchers’ decision making

process. Because we do not model Sjt as a function of physicians’ expected utilities in prescribing each

statin, the decision on whether to switch is independent of the decision on which drug to prescribe. We

do not model Sjt as a function of physicians’ expected utilities for the following reasons:

1. It is very hard for a patient or a physician to directly observe the efficacy in reducing heart disease

risks from patient’s experience. Therefore, the patient’s or physician’s switching decision could

mainly rely on factors other than heart disease risks.

2. If we model the switching rate as a function of physicians’ expected utilities, the model will become

too complex to estimate. If the switching rate is a function of physicians’ expected utilities, the

patients of physicians who evaluate drug j the least will switch from drug j to other statins first.

Then, the physicians of remaining patients with drug j will have a different distribution of utilities

on prescribing j from the physicians of switching patients from drug j. To model these switching
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or staying behaviors, we have to simulate a very large number of physicians and patients and then

follow their decisions at each period. Such a simulation procedure will significantly increase the

computational burden of estimating the model.

Because we do not endogeneize Sjt, we do not estimate switching costs.

5.7 Estimation

Likelihood

The quantity demand djt at time t for drug j can be expressed as:

djt = d̂1jt + d̂2jt + d̂3jt + ejt, (23)

where ejt represents a measurement error. d̂1jt, d̂
2
jt and d̂3jt denote the estimated demand for group 1,

2 and 3, respectively. Note that subsection 5.6 describes how we model estimated demand for each

group.

Assuming that the measurement error, ejt in equation (23) is normally distributed, we can obtain

the likelihood function:

l({djt}
J
j=1|{{detailjp}

J
j=1}

t
p=1, {β̃jl}

lt
l=1

, {Nl}
lt
l=1

, {PUBs
p}

t
p=1, {PUBjt}

J
j=1; θd), (24)

where θd is the vector of parameters; detailjt is detailing spending for drug j at time t; lt denotes the

number of landmark clinical trials up to time t; β̃jl is a level of quality signal from landmark clinical trial

l; Nl is the number of patients which clinical trial l follows; PUBs
t and PUBjt are vectors of general

publicity and brand specific publicity, respectively. The likelihood of observing d = {{djt}
J
j=1}

T
t=1 is

L(d|{detailjt}
J
j=1}

T
t=1, {β̃jl}

lt
l=1

, {Nl}
lt
l=1

, {PUBs
t }

T
t=1, {{PUBjt}

J
j=1}

T
t=1; θd)

=
T
∏

t=1

l({djt}
J
j=1|{{detailjp}

J
j=1}

t
p=1, {β̃jl}

lt
l=1

, {Nl}
lt
l=1

, {PUBs
p}

t
p=1, {PUBjt}

J
j=1; θd). (25)

We estimate parameters by maximizing the log-likelihood function. Unlike the previous literature

on learning models, all the quality signals are “observable” in our model. Therefore, we can simply

construct the likelihood function without adopting any simulation method.
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Initial condition problem

Note that our detailing data starts from Q2 1993. Therefore, the data do not include the period

when Mevacor, Pravachol, or Zocor were introduced. By Q2 1993, these three drugs might have

accumulated goodwill stocks of persuasive detailing efforts. To control for the initial condition problem,

we follow Ching and Ishihara (2010) and assume that before Q2 1993, the manufacturers of these three

drugs would have devoted the same detailing efforts as they did on average between Q2 1993 and Q1

1994.11 However, the initial condition problem does not apply to informative detailing because the first

landmark clinical trial is published in Q4 1994, which is within our sample period.

5.8 Identification

In this subsection, we provide some intuitions about how the parameters of our model can be identified.

The parameters in the adoption decision stage (αs
0, α

s
c, α

s
d, α

s
lc, α

s
rh, α

s
se, δ

s
d, δ

s
p) can be identified by the

variation of market share of statins as a whole and the variation of the explanatory marketing variables,

such as, sum of detailing, sum of clinical trial outcomes and sum of publicity across statins.

Correlation in the initial prior beliefs (ρ0) can be identified from the observed (to researcher) quality

signals on efficiency ratios from clinical trial outcomes and the timing of each clinical trial release as

well as the changes in relative market shares of statins before and after the release of each clinical trial.

In identifying the correlation parameter, the observed quality signals play a pivotal role because the

change in market shares before and after the release of a clinical trial can be moderated by both the

realized quality signal from the clinical trial and the extent of correlated learning. For example, if a

drug does not gain relative market share after the release of its own clinical trial, there are two possible

explanations: (i) The realized quality signal from the clinical trial is the same as physicians’ current

perceived quality for the drug, and there is no correlated learning (i.e., ρ0 = 0). Or, (ii) the realized

quality signal is higher than physicians’ current perceived quality, but the extent of correlated learning

11For the publicity variables, we use the pre-sample period data from Q1 1986 to Q1 1993 to create STK publicityt=1.
It is unlikely that there are much news about statins available prior to Q1 1986 because the first statin was launched in
Q3 1987.
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is extremely high (i.e., ρ0 ≃ 1); consequently, physicians update their prior beliefs about the qualities

of both drugs by the same amount. By explicitly using the information reported in a clinical trial, we

can observe the realized quality signals. This is how we can tell which explanation plays a bigger role,

and hence identify the correlation parameter.

The parameters that determine the persuasive (κd, δp) and informative detailing (α0, αd, δi) can

be separately identified because (i) they enter the model in two very different structural ways, and

(ii) we assume that clinical trial outcomes only affect the informative detailing and we explicitly use

the information from clinical trials. As a result, clinical trials provide exclusion restrictions needed to

disentangle the persuasive and the informative effects of detailing. It is worth emphasizing that clinical

trials differ in terms of (a) which drugs they study; (b) number of subjects (patients); (c) reported

mean efficiency ratio; (d) release time. All of these would only change the way informative detailing

affects physicians’ expected utility associated with different drugs. For example, the observed clinical

trial results and their release timings help identify the informative detailing parameter by determining

the number of physician types and physicians’ perceived quality by type in each period. Therefore,

the variation of the market shares, the variation of physician types over time, and the corresponding

variation of detailing help identify the proportion of each physician type and informative detailing

parameters.

Note that the change in physicians’ information sets would also shift the impact of persuasive

detailing on physician’s choice in our random utility modeling framework, but in a very specific way

determined by the model. Therefore, the persuasive detailing parameters are essentially acting as “free”

parameters to help fit the variation of market shares that cannot be fully explained by informative

detailing and learning.
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6 Results

6.1 Parameter Estimates

We now discuss the parameter estimates. The total number of structural demand parameters is 26.

Recall that we treat Mevacor, Pravachol, Zocor, Lipitor and Crestor as inside goods because they

compose more than 95% of the demand for statins for the whole sample period. We treat two other

statins, Lescol and Baycol, as part of the outside good.

Table 5 shows the parameter estimates. The first section in the table describes learning parameters.

Physicians’ initial prior belief (β) on efficiency ratio is 0.113. As in table 2, most signals on the efficiency

ratios from landmark clinical trials are larger than 0.5. Therefore, physicians have relatively low initial

prior beliefs on statins’ efficiency ratios and later learn about true efficiency ratios. Due to our model

structure, we are only able to estimate the ratio of signal variance on efficiency ratio (σ2
ζ ) to initial prior

variance on efficiency ratio (σ2
β). We normalize σ2

β to 1. We report the signal variance from 10,000

patients instead of the signal variance from 1 patient by rescaling the parameter (σ2
ζ ). The rescaled

σ2
ζ is estimated to be 6.035. The initial prior correlation on efficiency ratio across drug (ρ0) is 0.658,

which suggests that there is a partial information spill-over effect across statins. This implies that if

one statin receives a new clinical trial result, physicians update their beliefs about the efficiency ratio

of not only the focal statin in the clinical trial, but also other statins.

To demonstrate the rate of learning, in figure 8 we graph how the most updated physician learn

about the efficiency ratios (i.e., E[βjt]) over time based on our parameter estimates. “The most updated

physician” refers to a physician who has learned about all the clinical trial results available up to time

t. The figure shows that the physician updates her beliefs about all the drugs whenever the clinical

trial is released. Because of correlated learning (information spill-over), she learns about the efficacies

of not only a drug studied in the clinical trial, but also other statins. Before Q4 1994, there has been

no landmark clinical trial to support statins’ efficacy in reducing heart disease risks. The physician
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has exactly the same prior belief about Mevacor, Pravahol, and Zocor before Q4 1994. In Q4 1994,

Zocor received a new clinical trial (4S study) supporting its efficacy in reducing heart disease risks.

Now the physician updates her beliefs about all three drugs not just about Zocor due to correlated

learning. However, because the information spill-over is not 100%, the physician’s belief on Zocor is

higher than those on other drugs. Lipitor’s first landmark clinical trial was released in Q2 2003. Before

Q2 2003, the physician has the lowest belief on Lipitor among all statins. However, after the clinical

trial results, her E[βLipitor,t] became the highest among all statins. The graph seems to suggest that

Lipitor benefits much from other statins’ investment in landmark clinical trials but there is still room

for its own investment. In one of our counterfactual experiments, we will investigate this further.

We find that both informative (αd) and persuasive (κd) detailing parameters are positive and sig-

nificant. The results indicate that detailing has both persuasive and informative roles in physicians’

prescription choices. Among brand specific publicity, only publicity in reducing heart disease risks

(αrh) has a significant impact on statin choice stage. The results seem to indicate that patients who

are exposed to heart disease publicity encourage their physicians to read clinical trial results. We also

find that the coefficient for the perceived quality (ω) to be marginally significant.

We normalize the Mevacor’s brand dummy to be zero. All the brand dummies are positive and

significant except for Crestor. Crestor’s brand dummy is positive but insignificant. It is possible that

we do not have enough observations for Crestor to pin down its brand dummy. Carryover rate for

information (δi), i.e., 1 - forgetting rate, is estimated to be 0.70. The interpretation is that about 30%

of physicians forget about the clinical trial results and become totally uninformed at each quarter. One

might argue that the forgetting rate is too high. Because physicians prescribe many other drugs in

addition to statins, they might not remember the details of clinical trials well. We believe that this is

also one reason why pharmaceutical firms keep detailing until its drug’s patent expires.

Next, we discuss parameters in the adoption decision stage. The coefficient of sum of detailing stock
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(αs
d) is 0.008. This positive and significant coefficient implies that the aggregate detailing stocks increase

the total demand for the whole statin class. We are also interested in whether the impact of aggregate

detailing increases with the accumulated scientific evidence for the statins category. The coefficient

of the interaction term of aggregate clinical trial results and aggregate detailing (αs
c) is positive but

insignificant, which indicates that accumulated clinical trial information does not significantly increase

the effectiveness of detailing in converting potential patients to statin users.

We should also point out that the publicity stocks for reducing heart disease risks and side-effects

are not significant in the adoption decision stage, although lowering cholesterol levels is marginally

significant. This finding appears to be different from the market expansion stage results in chapter 1.

But we should emphasize that the adoption decision stage here only focuses on potential patients, but

the market expansion stage in chapter 1 applies to both potential patients and current statin users.

The difference between the results of these two studies suggests that general publicity stocks have a

significant impact on keeping existing statins users from quitting statins.

6.2 Counterfactual Experiments

Now we turn to counterfactual experiments.

Experiment 1

Since the qualities on most pharmaceutical products are uncertain, to reduce this uncertainty,

pharmaceutical firms sponsor clinical trials even after marketing the drug. By sponsoring a post-

marketing clinical trial, firms want to achieve clinical trial results related to the effectiveness in reducing

heart disease risks. However, a clinical trial to prove efficacy in reducing heart disease risks requires

medical researchers to follow up on thousands of patients for a few years. Therefore, sponsoring a

post-marketing clinical trial is a big investment for the firm. If physicians can indirectly learn about

the ability of a new statin in reducing heart disease risks through incumbent statins’ clinical trials

for heart disease risks, additional landmark clinical trial results for its own may not be necessary to
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convince physicians to prescribe it. This could be the case for Lipitor. Prior to its entry in 1997, several

incumbent firms had already obtained landmark clinical results for reducing heart disease risks. Lipitor

obtained its own landmark clinical trial results several years after its introduction in 1997. How much

of the impact did these landmark clinical trials have on Lipitor’s sales? Were the landmark clinical

trials for its own drug, Lipitor, worth the investment of the drug company?

To address these questions, we use our model to forecast the demand for Lipitor in a counterfactual

situation where Lipitor does not receive any clinical results supporting that it reduces heart disease risks

by shutting down Lipitor’s landmark clinical trials. Figure 10 graphs the benchmark and counterfactual

demand for statins. The dotted lines denote the counterfactual demands. The counterfactual demand

is almost 100,000 prescription per quarter lower than the benchmark demand by the end of 2004.

Although we shut down all three landmark clinical trials for Lipitor, the counterfactual demand for

Lipitor is slightly lower (around 4%) than the benchmark demand. Liptior’s global annual sales is

almost $13 billion in 2003. Therefore, the 4% loss would cost more than $500 million per year. In a

post-marketing clinical trial, following one patient would cost roughly tens of thousand dollars for a

few years. Even with rough calculation, we can tell the 4% sales difference per year is big enough for

Lipitor to invest in its own post-marketing clinical trials.

Experiment 2

Our estimation results suggest that (i) there is information spill-over of landmark clinical trial

results across drugs, and (ii) Lipitor may gain late mover advantage by free-riding on the information

provided by its rivals’ clinical trials. Therefore, we are interested in quantifying how important this

correlated learning is. How big is the effect of correlated learning? How much did Lipitor benefit

from the clinical trials which other drug companies conducted? To answer the above questions, we

forecast the demand for each statin in a counterfactual situation where there is no correlated learning.

Under this counterfactual condition, we set the correlated learning parameter (ρ0) to be zero. Figure 11
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presents the benchmark and counterfactual demand for statins. The counterfactual demand is almost

4% to 7% per quarter lower than the benchmark demand for most quarters. As we argue in the previous

counterfactual experiment, this amount of sales decrease is still substantial considering the global sales

volume of Lipitor.

Nevertheless this experiment also shows that correlated learning cannot be the only driving force for

the early success of Lipitor. So what else can contribute to its success? One possibility is its superior

efficacy in lowering cholesterol levels. Because Lipitor has the highest qc (except Crestor), Lipitor may

have the highest E[qh] although it has a relatively low E[β]. To investigate this possibility, we graph

the most updated physician’s E[qh] over time under the condition that no correlated learning exists

in figure 13. The figures confirms that Lipitor has the highest E[qh] even in the absence of correlated

learning. Therefore, we can conclude that Lipitor’s early success is also driven by its superior efficacy

in lowering cholesterol levels.

Experiment 3

While correlated learning generates late mover advantage, switching cost is a source of first mover

advantage. Our next question relates to the benefits incumbent drugs receive due to the switching

costs. Although we do not estimate switching costs, we can still conduct a counterfactual experiment

to shed light on its importance by assuming that all patients make a decision as if they are part of

the “potential patients group.” In other words, we do not use switching rates or discontinuing rates

in the counterfactual experiment. Figure 12 depicts the counterfactual experiment result. The figure

shows that a new drug, Lipitor, would become the best selling drug in the category right after its entry

(Q2 1997) and all the incumbent drugs would lose market shares very quickly under the counterfactual

condition. This implies that a policy which reduces switching costs would help a new drug penetrate into

the market quicker. The figure, however, also shows that the counterfactual demand would eventually

be similar to the benchmark demand. Therefore, it seems that switching costs do not have a long-
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lasting impact. Interestingly enough, the figure also shows that the absence of switching costs helps

the take-off of a newer drug, Crestor. Recall that Crestor was introduced in 2002. Lipitor would have

lost market share to Crestor much faster if there was no switching cost.

7 Conclusion and Future Research

We develop a new structural model of physicians’ prescribing decisions under the environment where

qualities are uncertain and physicians can learn about the quality of drugs through correlated learning.

We define a variable, “efficiency ratio,” which measures how efficiently a drug can translate reduction

in cholesterol levels into reduction in heart disease risks. We assume that physicians learn about the

efficiency ratio for each drug from landmark clinical trials and allow physicians’ initial prior perceptions

of the efficiency ratio to be correlated across drugs. We find that the initial prior perceptions on the

efficiency ratio are positively correlated. This information spill-over allows a late mover such as Lipitor

to significantly benefit from incumbents in the absence of its direct evidence for the efficacy in reducing

heart disease risks.

Unlike the previous literature which assumes that quality signals from clinical trials are unobservable

to researchers, we treat quality signals from clinical trial results as observable by taking a careful look

at clinical trial results and extracting detailed information from the clinical trials. By treating clinical

trials in this manner, we are able to clearly identify the correlated learning parameters.

In addition to using product level market share data, we supplement them with switching rates and

discontinuing rates. The switching rate data are particularly useful for taking the presence of switching

costs into consideration. Our counterfactual experiment shows that in the absence of switching costs,

Lipitor would become a top-selling statin within three months of its entry. Interestingly enough, the

absence of switching costs would also help the take-off of the newer statin, Crestor, and hurt the sales

of Lipitor. The results indicate that switching costs have two counteracting effects on Lipitor.

Our model also allows detailing to have both persuasive and informative roles in physicians’ pre-
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scribing decisions. Our detailed clinical trial data and the sales and detailing variations help separately

identify these two different roles of detailing. The estimation results find both persuasive and infor-

mative roles to be significant in this market. The results could be used to help marketing managers

understand how to allocate their detailing budgets optimally according to the information levels of

physicians.

We should point out that switching rates or discontinuing rates can differ under some counterfactual

conditions. However, because we do not explicitly model switching rates or discontinuing rates, we

assume that switching rates or discontinuing rates will be the same as the benchmark condition in the

counterfactual experiments. In the future, we plan to model switching rates and discontinuing rates as

a function of switching costs, continuing costs, and physicians’ information set.

Also we plan to relax the assumption on detailer’s visiting decision. In our simplified model, the

model assumes that a detailer visits a physician randomly. In other words, the probability of a detailer’s

visit to any given physician is independent of whether the physician is informed in that period. In reality,

however, pharmaceutical firms may prefer to detail uninformed physicians. If this is the case, the more

informed physicians there are, the higher is the chance that uninformed physicians receive a detailing

visit for any given detailing spending. Then the return of detailing should increase with the portion

of informed physicians. To capture this selective detailing behavior, we will interact detailing with

the portion of informed physicians. A positive coefficient of the interaction term would imply that

pharmaceutical firms selectively details physicians.

We can also re-estimate the model by assuming that every patient makes a prescription decision as if

he/she is a potential patient. We do this re-estimation by ignoring the switching rates and discontinuing

rates. By comparing the new results and our current results, we can measure the potential biases of

the estimates when ignoring the choice difference between existing and potential patients.
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Table 1: Summary of Statins

Brand Molecule Entry Date Generic Entry Manufacturer

Mevacor lovastatin Sep-1987 Apr-1997 Merck & Co.

Pravachol pravastatin Nov-1991 Aug-2000 Bristol-Myers Squibb

Zocor simvastatin Feb-1992 Mar-2003 Merck & Co.

Lipitor atorvastatin Apr-1997 N.A.1 Pfizer

Crestor rosuvastatin Mar-2003 N.A.1 AstraZeneca

1 - The patent expiration date is beyond our sample period.

Table 2: Landmark Clinical Trials for Statins
Title Publication 

date
Drugs 

Studied
# of  

Subjects
Follow-up 

period
Sponsors LDL Reduction 

(mg/dL)
Heart-Disease 

Risk Reduction
Efficiency Raito 
(HDRR / LDL)

4S Dec,1994 Zocor 4,444 5.4 years Merck & Co. 68.45 34.30% 0.50

WOSCOPS Nov,1995 Pravachol 6,595 4.9 years Bristol-Myers 
Squibb

41.38 31.50% 0.76

CARE Oct,1996 Pravachol 4,159 5 years Bristol-Myers 
Squibb

39.83 22.70% 0.57

AFCAPS/TexCAPS May,1998 Mevacor 5,705 5.2 years 36.35 37.10% 1.02

LIPID Nov,1998 Pravachol 9,014 6.1 years Bristol-Myers 
Squibb

39.83 22.20% 0.56

HPS Jul,2002 Zocor 20,536 5 years Merck & Co. 49.88 26.00% 0.52

PROSPER Nov,2002 Pravachol 5,804 3.2 years Bristol-Myers 
Squibb

40.22 17.40% 0.43

ALLHAT-LLT Dec,2002 Pravachol 10,355 4.8 years Pfizer 20.88 9.50% 0.45

ASCOT-LLA May, 2003 Lipitor 10,305 3.3 years Pfizer 41.38 35.40% 0.86

ALLIANCE Jul, 2004 Lipitor 2,422 4.3 years Pfizer 15.47 38.30% 2.48

CARDS Aug, 2004 Lipitor 2,838 3.9 years Pfizer 44.08 31.30% 0.71

A to Z Sep, 2004 Zocor 4,498 2 years Merck & Co. 14.31 13.80% 0.96
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Table 3: Statins’ Mean Cholesterol Reduction by Strength (mmol/L)

5 10 20 40 80

Mevacor N/A 1.02 1.40 1.77 2.15 1.59

Pravachol 0.73 0.95 1.17 1.38 1.60 1.28

Zocor 1.08 1.31 1.54 1.78 2.01 1.66

Lipitor 1.51 1.79 2.07 2.36 2.64 2.22

Crestor 1.84 2.08 2.32 2.56 2.80 2.44

Daily Dose (mg)
Mean

Table 4: Summary of Publicity Variables

Mean Std. Dev. Min. Max.
Mevacor 47 255 6.54 4.54 0.00 20.19
Pravachol 47 262 6.30 4.25 0.00 17.42

Zocor 47 470 10.74 7.90 0.00 34.00
Lipitor 32 707 22.40 15.99 1.19 51.30
Crestor 8 120 14.92 14.18 0.95 41.00

Mean Std. Dev. Min. Max.
Mevacor 47 41 0.86 1.79 -1.58 7.13
Pravachol 47 81 2.01 2.69 0.00 12.67

Zocor 47 94 2.05 3.17 -3.00 14.25
Lipitor 32 92 2.88 4.24 0.00 16.15
Crestor 8 7 0.84 1.07 0.00 2.85

Mean Std. Dev. Min. Max.
Mevacor 47 5 0.13 0.57 0.00 3.56
Pravachol 47 14 0.30 0.87 -1.19 4.75

Zocor 47 15 0.33 0.98 -1.19 4.75
Lipitor 32 18 0.15 0.72 -1.19 2.00
Crestor 8 72 -0.99 1.77 -5.00 0.00

# of Articles
Values

# of 
Quarters

Lowering Cholesterol 
Levels

Reducing Risks of Heart 
Disease

# of 
Quarters

# of Articles

Values
# of Articles

Values

Side-Effects
# of 

Quarters
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Table 5: Parameter Estimates
Estimates S.E.

� (Initial Prior Belief on Efficiency Raito) 0.1132 0.0596

1�
2
 (Initial Prior Variance on Efficiency Raito) 1.0000

1�
2 

(Signal Variance from 1,000 Patients) 6.0353 0.9996

!0 (Correlation Term in Initial Prior) 0.6578 0.2634

.0 (Constant) -8.0521 0.9993

.d (Informative Detailing) 3.4070 1.0096

.lc (Brand Specific Publicity in Lowering Cholesterol Levels) 0.3661 0.2702

.rh (Brand Specific Publicity in Reducing Heart Disease Risks) 0.3514 1.0335

.se (Brand Specific Publicity in Side Effects) -0.0184 1.0018

& (Coefficient of Perceived Quality) 1.1112 0.6330

�d (Persuasive Detailing) 0.0120 0.0042

Pravachol 0.8696 0.3887

Zocor 0.9702 0.3859

Lipitor 1.0990 0.5409

Crestor 0.2380 0.7339

.
s
0 (Market Expansion Stage Constant) -5.2073 0.2441

.
s
c (Clinical Trial * Aggregate Detailing Stock) 0.0111 0.0085

.
s
d (Aggregate Detailing Stock) 0.0082 0.0011

.
s
lc (General Publicity Stock in Lowering Cholesterol Levels) 0.3661 0.2702

.
s
rh (General Publicity Stock in Reducing Heart Disease Risks) 0.3514 1.0335

.
s
se (General Publicity Stock in Side Effects) -0.0184 1.0018

/
s
d (Carryover Rate of Detailing in Adoption Decision) 0.9720 0.0060

/
s
p (Carryover Rate of Publicity in Adoption Decision) 0.7375 0.0432

/i (Carryover Rate of Information in Statin Choice) 0.7028 0.2102

/p (Carryover Rate of Persuasive Detailing in Statin Choice) 0.8878 0.0466

Standard Deviation of e jt (in Hundred Thousand) 0.3213 0.0207

Estimates shown in bold are significant at 5% level.

-2064.56

Learning Parameters

Adoption Decision Stage Parameters

Additional Parameters

Log Likelihood

Brand Dummies

Statin Choice Stage, Utility Parameters
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Figure 5: Quarterly Flow of General Publicity
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Figure 7: Decision Process of Existing Patient

Keep Taking a Statin Quit Taking a Statin

Decide to Switch Stay with Statin j

Statin 1 Statin j-1 Statin j+1 Statin J

Figure 8: The Most Updated Physician’s Learning over Time

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Q
1
/1
9
9
3

Q
1
/1
9
9
4

Q
1
/1
9
9
5

Q
1
/1
9
9
6

Q
1
/1
9
9
7

Q
1
/1
9
9
8

Q
1
/1
9
9
9

Q
1
/2
0
0
0

Q
1
/2
0
0
1

Q
1
/2
0
0
2

Q
1
/2
0
0
3

Q
1
/2
0
0
4

M
o
st
�U
p
d
a
te
d
�P
h
y
si
ci
a
n
's
�E
[t
]

�Mevacor �Pravachol �Zocor �Lipitor Crestor

44



Figure 9: Fit: Actual and Simulated Prescription Volume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
1
/1
9
9
3

Q
1
/1
9
9
4

Q
1
/1
9
9
5

Q
1
/1
9
9
6

Q
1
/1
9
9
7

Q
1
/1
9
9
8

Q
1
/1
9
9
9

Q
1
/2
0
0
0

Q
1
/2
0
0
1

Q
1
/2
0
0
2

Q
1
/2
0
0
3

Q
1
/2
0
0
4

N
u
m
b
e
r�
o
f�
P
re
sc
ri
p
ti
o
n
s�
(M

il
li
o
n
s)
�

�Mevacor�(Data) �Pravachol�(Data) �Zocor�(Data) �Lipitor�(Data) Crestor�(Data)

�Mevacor�(Fitted) �Pravachol�(Fitted) �Zocor�(Fitted) �Lipitor�(Fitted) Crestor�(Fitted)

Figure 10: Counterfactual Experiment 1
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A Full Learning Model

In this appendix, we explain our full learning model. In the full model, we formulate the learning with

matrix notations. Following the simple learning model, we can define physician k’s expected conditional

utility to prescribe drug j to patient i at time t as follows:

E[Uijkt|I
k(t)] = ω ·E[βj |I

k(t)] + κd · STK detailjt + bj + ǫijt, (26)

where E[·|Ik(t)] denotes the expected value given physician k’s information set at time t.

Physician k’s initial prior on the efficiency ratio at time t = 0 can be expressed as follows:

Bk0 ∼ N(B,Σ0), (27)

where B is a J x 1 matrix whose elements are β; Σ0 is a J x J matrix whose diagonal elements are σ2
β

and off-diagonal elements are σ2
β · ρ0.

Landmark clinical trials are the main sources of information about this efficacy. Physicians are

assumed to update their beliefs on the efficiency ratio of each drug when they are exposed to landmark

clinical trial results. A signal from clinical trial l for drug j, β̃jl, is :

β̃jl = βj + ζl, (28)

where βj is the true mean level of the efficiency ratio for drug j and ζl is a signal noise and i.i.d.

normally distributed with zero mean and variance σ2
ζl = σ2

ζ · 1, 000/Nl for landmark clinical trial l. σ2
ζ

is signal variance from 1,000 patients. Nl denotes the number of patients who participate in landmark

clinical trial l.

Let Bkt and Σkt denote physician k’s prior belief and prior variance on the efficiency ratio at time

t, respectively.12 If the physician does not learn about any clinical trial at time t, prior belief and prior

variance on the efficiency ratio at time t+1 will be the same as prior belief and variance at time t, i.e.,

Bkt+1 = Bkt and Σkt+1 = Σkt.

12Note that Bk0 = B and Σk0 = Σ0
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If she learns about the clinical trial l for drug j at time t, she will update her belief as follows:

Bkt+1 = Bkt +Kβ
kt · (B̃kt −Bkt), (29)

where Kβ
kt = (Σ−1

kt +Σlt)
−1 ·Σlt denotes the Kalman coefficient; Σlt’s jth diagonal element is 1

σ2

ζl

and all

other elements are zero. The physician updates her prior variance and her posterior variance becomes:

Σkt+1 = (Σ−1

kt +Σlt)
−1. (30)

If the physician learns about more than one landmark clinical trial result, she will update the her belief

again in a similar way when she learns about clinical trial l.
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